

TUBO IN POLIETILENE TOP PE-XA

CODICE PRODOTTO 0080958/0080959

Il tubo in polietilene reticolato TOP Energy Expert è ottenuto con il sistema di reticolazione a perossidi, ed è classificato nel gruppo Pe-Xa.

Questo processo conferisce al tubo un'elevata resistenza alle alte pressioni e alle alte temperature, superiore ad ogni altro processo di reticolazione per tubi PEX. Quindi si incrementa durabilità e qualità del sistema di applicazione.

Il tubo TOP ENERGY viene realizzato in tre strati: lo strato interno, in Pe-Xa, in polietilene ad alta densità reticolato secondo il metodo "A", lo strato intermedio in materiale polimerico altamente adesivo, lo stato esterno, in EVOH, etilen-vinil-alcool è una barriera di alcune decine di micron che rende il tubo praticamente impermeabile all'ossigeno riducendo così i problemi corrosivi negli impianti di riscaldamento.

SCHEDA TECNICA

DESCRIZIONE

La manifattura di questo tubo garantisce l' ottenimento di un grado di reticolazione pari a oltre il 70% della struttura. Non si rende quindi necessario nessun altro trattamento al tubo, né termico né di anti-invecchiamento.

In aggiunta, con questo processo si può garantire uniformità di reticolazione in ogni sezione del tubo, con differenze rilevabili nell'ordine di 0,5%.

La reticolazione trasforma l'originale struttura termo plastica del polietilene, in una struttura termostabile con le seguenti proprietà:

- Incremento della resistenza a trazione
- Incremento della resistenza a rottura per criccatura
- Miglioramento della resistenza allo scoppio per pressione, anche a lungo termine
- Riduzione degli allungamenti in prossimità del punto di rottura
- Miglioramento delle proprietà di stabilità ad alte temperature
- Miglioramento delle proprietà dimensionali
- Miglioramento delle proprietà di resistenza alle alte temperature nell'uso con acqua
- Resistenza alla corrosione da solventi, olii, acqua, senza produrre scaglie, corrosione o invecchiamento

Il tubo TOP Energy è consigliato per il trasporto di acqua calda per uso riscaldamento, o per il trasporto di fluidi corrosivi.

Il tubo TOP Energy è realizzato nel rispetto delle normative UNI-EN ISO 15875.

Il tubo TOP Energy ha un elevato grado di flessibilità che mantiene anche a basse temperature.

DATI TECNICI

CARATTERISTICHE FISICHE

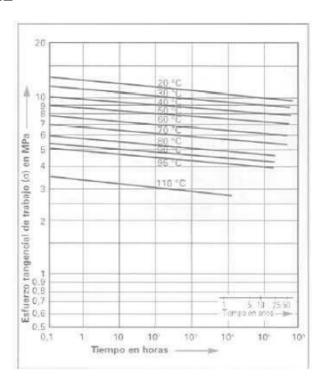
Dimensioni	17x2 mm 20X2 mm 25x2,3 mm	
Densità	951 kg/m3	
Grado di reticolazione	≥70%	
Rugosità	0.007 mm	
Permeabilità all'ossigeno	≤0,32mg/m ² d	

CARATTERISTICHE TERMICHE

Temperatura max di esercizio	90	°C
Temperatura mal	100	°C
Temperatura min di esercizio	5	°C
Dilatazione termica a 120°C	<2.5	%
Coefficiente di espansione lineare	1.4 (10-4)	K-1
Calore specifico a 23°C	2.3	Kj/kgK
Conduttività Termica	0.35-0.38	W/mK
Temperatura VICAT	130-132	°C

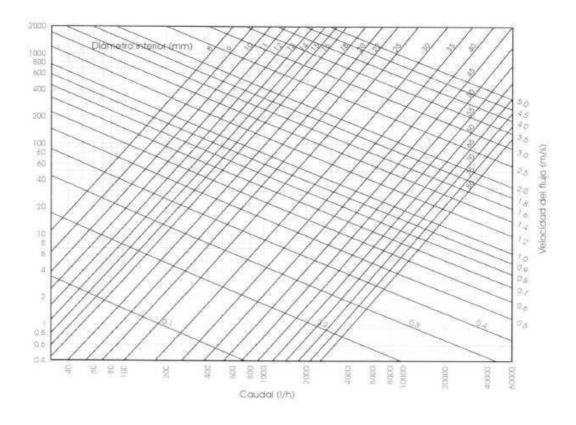
CARATTERISTICHE MECCANICHE

Resistenza a trazione	>22	N/mm2
Allungamento alla rottura	>400	%
Modulo di elasticità a 20°C	>800	N/mm2
Raggio di flessione minimo consentito	5d	mm
Resistenza a pressione interna di12,0Mpa, 20°C	≥1	ore
Resistenza a pressione interna di 4.8Mpa, 95°C	≥1	ore
Resistenza a pressione interna di 4.7Mpa, 95°C	≥22	ore
Resistenza a pressione interna di 4.6Mpa, 95°C	≥165	ore
Resistenza a pressione interna di 4.4Mpa, 95°C	≥1000	ore
Resistenza a pressione interna di 2.5Mpa, 95°C	≥1	anni


CLASSIFICAZIONE SECONDO LA CLASSE APPLICATIVA - NORMA UNI EN ISO 15875

Dimensione		Pressione di esercizio (bar) per classe applicativa*			
	Classe 1	Classe 2	Classe 4	Classe 5	
17x2	8	8	10	8	
20x2	6	6	8	6	
25x2,3	6	6	8	6	

Classe applicativa*	Campo applicativo	Condizioni di esercizio per una durata di 50 anni e 100 ore di cui
1	Rifornimento acqua calda, 60°C	49 anni alla temperatura di esercizio (T _D) di 60°C, 1 anno alla temperatura massima (Tmax) di 80°C e 100 ore alla temperatura d i malfunzionamento (Tmal) di 95°C
2	Rifornimento acqua calda, 70°C	49 anni alla temperatura di esercizio (T _D) di 70°C, 1 anno alla temperatura massima (Tmax) di 80°C e 100 ore alla temperatura d i malfunzionamento (Tmal) di 95°C
4	Riscaldamento a pavimento e radiatori a bassa temperatura	2,5 anni alla temperatura di esercizio (T _D) di 20°C, 20 anni alla temperatura di esercizio (T _D) di 40°C, 25 anni alla temperatura di esercizio (T _D) di 60°C, 2,5 anni alla temperatura massima (T _{max}) di 70°C e 100 ore alla temperatura di malfunzionamento (Tmal) di 100°C
5	Riscaldamento a pavimento e radiatori ad alta temperatura	14 anni alla temperatura di esercizio (T _D) di 20°C, 25 anni alla temperatura di esercizio (T _D) di 60°C, 10 anni alla temperatura di esercizio (T _D) di 80°C, 1 anno alla temperatura massima (T _{max}) di 90°C e 100 ore alla temperatura di malfunzionamento (Tmal) di 100°C


^{*}Tutti i sistemi che soddisfano le condizioni di una qualsiasi delle classi applicative sopraelencate, sono anche utilizzabili per convogliare acqua fredda a 20°C per un periodo di 50 anni e ad una pressione di esercizio di 10 bar.

CURVA DI REGRESSIONE

Le curve di regressione, come da normativa EN ISO 15875, forniscono precise indicazioni qualitative sulle tubazioni, sulla scorta di quanto stabilito dalla ISO 9080.

PERDITE DI CARICO

CONTROLLI DI QUALITA'

Tutti i tubi commercializzati da Energy Expert sono garantiti con certificazione del produttore che applica presso i propri laboratori, in maniera rigorosamente accurata i seguenti controlli:

- **Dimensioni**: diametro esterno,diametro interno, spessore parete. Il controllo è doppio ed avviene in linea durante la produzione e fuori linea, sul prodotto finito
- Grado di reticolazione: Secondo norme UNI-EN 579
- **Dilatazione termica**: in accordo con UNI-EN 743
- Resistenza a pressione interna: secondo norma UNI EN ISO 15875 ed UNI EN 921
- Tempo di induzione ossidazione (OTI): secondo norma UNI-EN 728.
- Raggio di flessione minimo consentito: secondo norma EN 1264-4

BARRIERA EVOH anti diffusione ossigeno

Il tubo TOP Energy Pe-Xa – EVOH è un tubo realizzato secondo norme UNI-EN ISO 15875. La barriera anti diffusione ossigeno realizzata con metodo EVAL, adempie alle normative UNI EN 1264-4.

La barriera anti diffusione dell'ossigeno EVOH è un sottile strato di etilen-vinil-alcool copolimero che previene la permeabilità del tubo alla diffusione dell'ossigeno.

Questo evita il problema dell'ossigenazione dell'acqua e la conseguente ossidazione e corrosione dei componenti metallici che costituiscono l'impianto. Di conseguenza l'intero impianto trae vantaggio in termini di durata nel tempo.

Il tubo Pe-Xa commercializzato da Energy Expert adempie ai rigidi standard qualitativi richiesti dalle normative, ed è un tubo certificato IIP UNI n°373 ed AENOR.

Il tubo Pe-Xa con barriera anti diffusione dell'ossigeno EVOH, combina i vantaggi del tubo Pe-Xa reticolato con metodo ai perossidi, e le proprietà della barriera anti diffusione di ossigeno EVOH.

Raccomandazioni per lo stoccaggio del prodotto

Il tubo Pe-Xa con barriera anti diffusione dell'ossigeno EVOH viene fornito in imballi che lo proteggono nel periodo di stoccaggio. Il prodotto non deve essere esposto alla luce diretta del sole perché i raggi ultravioletti, se l'esposizione si protrae nel tempo, lo possono danneggiare irrimediabilmente.

Energy Expert by Idroexpert